Distribution of pressure over an airfoil section may be a source of an aerodynamic twisting force as well as lift. A typical example is illustrated by the pressure distribution pattern developed by this cambered (nonsymmetrical) airfoil:


The upper surface has pressures distributed which produce the upper surface lift.
The lower surface has pressures distributed which produce the lower surface force. Net lift produced by the airfoil is the difference between lift on the upper surface and the force on the lower surface. Net lift is effectively concentrated at a point on the chord called the Center Of Pressure.


When the angle of attack is increased:


Upper surface lift increases relative to the lower surface force.
Since the two vectors are not located at the same point along the chord line, a twisting force is exerted about the center of pressure. Center of pressure also moves along the chord line when angle of attack changes, because the two vectors are separated. This characteristic of nonsymmetrical airfoils results in undesirable control forces that must be compensated for if the airfoil is used in rotary wing applications.

The pressure patterns for symmetrical airfoils are distributed differently than for nonsymmetrical airfoils:

Upper surface lift and lower surface lift vectors are opposite each other instead of being separated along the chord line as in the cambered airfoil.

When the angle of attack is increased to develop positive lift, the vectors remain essentially opposite each other and the twisting force is not exerted. Center of pressure remains relatively constant even when angle of attack is changed. This is a desirable characteristic for a rotor blade, because it changes angle of attack constantly during each revolution.


Return to Airfoils in General Proceed to The Relative Wind
Return to Dynamic Aerodynamics!
Return to Dynamic Flight

Copyright ©1999-2017 Dynamic Flight, Inc. All rights reserved.
Page Last Updated on: Nov-06-2017