Although precession is not a dominant force in rotary-wing aerodynamics, it must be reckoned with because turning rotor systems exhibit some of the characteristics of a gyro. The graphic shows how precession affects the rotor disk when force is applied at a given point:
|
Forces applied to a spinning rotor disk by control input or by wind gusts will react as follows:
This behavior explains some of the fundamental effects occurring during various helicopter maneuvers.
For example;
The helicopter behaves differently when rolling into a right turn than when rolling into a left turn.
During the roll into a left turn, the pilot will have to correct for a nose down tendency in order to maintain altitude. This correction is required because precession causes a nose down tendency and because the tilted disk produces less vertical lift to counteract gravity.
Conversely, during the roll into a right turn, precession will cause a nose up tendency while the tilted disk will produce less vertical lift.
Pilot input required to maintain altitude is significantly different during a right turn than during a left turn, because gyroscopic precession acts in opposite directions for each.
Copyright ©1999-2017 Dynamic Flight, Inc. All rights reserved.
Page Last Updated on: Nov-06-2017